Netlink APIs to Expose Netdev
Objects

Oct 2023, Netdev 0x17 Amritha Nambiar

Sridhar Samudrala



Agenda

Configuring Netdevices

Netdev Configuration Interfaces

YAML netlink

Netdev-genl (YAML Netlink for Netdev)
Queue Configuration

NAPI Configuration

Page Pool Configuration

Generic Queue Management

Summary




Configuring Netdevices

* Netdevs are becoming complex - more functionality, more configurability
* Multitude of netdevice features
e Multiple interfaces to configure
* Requires a stable, generic and scalable API
e To keep up with such complexity

* For user controllability

* Stronger generic models in the kernel abstract away driver specific
implementations (avoids code duplication and noticeable differences
between vendors)




Netdev Properties are Growing

Device configuration from Netdev for multiple properties such as:

Queue management and queue
properties

NAPI parameters

Statistics

RSS

Interrupt Moderation

Traffic/flow steering

Traffic shaping, rate limiting
Stateless offloads (Checksum,
GRO, TSO, USO, Vlan

strip/insertion etc .)

XDP

Zerocopy and header data
split per queue/queue-group
configurations
HW/netdev/driver dumps and
attestation

Scaling - aRFS/RFS/RPS/XPS
Tunneling

Link information




Netdev Configuration Interfaces

 Standards based upstream APIs used by multiple vendors:
* Functionality (enable/disable)

* Performance (parameters values, ranges, user specific demands per
feature)

 Debugging (report device diagnostic data, dumps, device attestation)

- TC * Netfilter
* Devlink .« Ip
 Ethtool . Bridge
 Sysfs

 Socket options




One size does not fit all

* High configurability issues are not new

* Kubernetes: Container Network Interface (CNI) Specification plugins

* plugin is a program that applies a specified network configuration

* OpenStack

« “OpenStack SDK is implemented as an extensible core, upon which vendor extensions
can be plugged in”

» Targeted APIs. Which the orchestration layer in user space would have to
combine

e For new features, netlink (netdev-genl) can be a useful candidate

* As attributes of different netdev objects




Netlink protocol specifications (in YAML)

* Reduces developer involvement in netlink coding

e Truly generic netlink libraries (no changes to support a new family or a
new operation)

* Netlink messaging and attributes in YAML, codegen outputs user and kernel
code (parsing, validating, documentation etc.)

e devlink, ethtool, netdev, DPLL, FOU, TLS handshake, 0VS,
address/route/link configuration

*Kernel uses the YAML specs to generate:
 the C uAPI header
* documentation of the protocol as a ReST file
e policy tables for input attribute validation

 operation tables

*Compatibility - Genetlink




Using Netlink protocol specifications

* Python CLI tool in kernel

* YAML specification to issue netlink requests to the kernel
(Documentation/netlink/specs/)

e CLI arguments:

e --spec - point to the spec file

* --do $name / --dump $name - issue request $name

* --json $attrs - provide attributes for the request

* --subscribe $group - receive notifications from $group

* JSON input arguments, output Python-pretty-printed

* Generating kernel code - tools/net/ynl/ynl-regen.sh

* Generating user code - YNL lib (libmnl based C library) integrates with
python code generator to create netlink wrappers)




Netdev-genl (YAML Netlink for Netdev)

* Generic netlink interface for configuring netdevice features (uses
netdev.yaml spec)

Request types:
* GET, SET (notifiers)

Operation types:
* Do

* Dump (all netdevs or filtered dump for single netdev)

Currently, netdev-genl exposes XDP features, XDP Rx metadata etc.

Other Netdev objects (APIs) are WIP:
* Queue

* NAPI

 Page pool




Queue Configuration

*Goals:

* Queue object for an abstract queue configuration model in the core

 Simplify modifications, reconfiguration for drivers, validations in
core, export configurations to user

*Basic queue parameters:
* Queue index
* Queue type (Rx, Tx, XDP-Tx)

e Interface index of netdevice to which the queue belongs

* NAPI id (NAPI instance servicing the queue)




Queue Configuration

*More per queue attributes possible:
e Statistics
* Ring size (descriptor number)

* Header-data split for Rx zerocopy (per queue configs, disable for
AF_XDP queue)

* Page pool id (Associate a page pool to a queue)
* Memory model (dma-buf, kernel vs user buf, NUMA node binding for queue, device
NUMA node vs app NUMA node etc.)

* RSS context handling (map queue to RSS context for container
partitioning)

e XDP - expose XDP_Tx queues




NAPI Configuration

*NAPI instance as netlink object

*Exposing NAPI attributes
 NAPI id
* Interface index of netdevice to which NAPI instance belongs
 Interrupt number associated with the NAPI instance
* PID of the NAPI thread

*Add/Extend:
e Poller timeout as NAPI attribute

* Usecases:

* Adjusting the NAPI thread priorities and SMP affinity

 Configure NAPI pollers to queues from the userspace (limit the number
of NAPI instances, 1 poller <-> queues (on the same interrupt vector)




Page Pool Configuration

*Expose page pool information via netlink
* Unique ID of a Page Pool instance
« Interface index of the netdev to which the pool belongs
* NAPI id of the instance using this page pool

* Memory use (number of references to this page pool, bytes/amount of
memory held by pages, when page pool was destroyed)

* Page pool statistics

Add/Extend:

e dma-buf (kernel vs user buf)

* NUMA node binding for pages, device NUMA node vs app NUMA node etc.




Queue management

*Goal:
* Generic dynamic queue management APIs (create, delete, start, stop)

* Allow creation of queues without full device reset
* Existing queues continue Tx/Rx, additional queues created
* Queue-ids sequential or from userspace?

« Align multiple models:
* Process specific queues without zerocopy (repurpose existing queues)
* Process specific queues from userspace with zerocopy (memory alloc/free from
process)
* Default driver queues for generic workload

*Requirements
* Queue object maintains full expected configuration and driver creates queues
* Page pool configuration (pp created by driver, userspace update/configure
parameters)
* Associate dma-buf (or host memory buffer) with a page-pool
* Associate queue with page-pool




Example APIs

GET:
e queue-get
{'ifindex': 12, 'napi-id': 593, 'queue-id': @, 'queue-type': 'tx'}

* napi-get
{'ifindex': 12, 'irq': 291, 'napi-id': 593, 'pid': 3817}

*page-pool-get
{'id': 10, 'ifindex’: 12, 'napi-id’: 593}

SET:

*queue-set:
queue-set Q_IDX_1 napi-id NAPI_ID_1
queue-set Q_IDX_2 napi-id NAPI_ID_1

CREATE:

*queue-create:
queue-create $Q_IDX napi-id $NAPI_ID




Summary

Netdevs are becoming complex with more functionality, more
configurability and requires a stable, generic and scalable API

*sﬂ; Targeted feature-specific APIs, Netlink for Netdev configuration
(netdev-genl)

@ Queue, NAPI, Page pool as netlink objects for Netdev

configuration

dnteld | 16
o S






	Netlink APIs to Expose Netdev Objects
	Agenda
	Configuring Netdevices
	Netdev Properties are Growing
	Netdev Configuration Interfaces
	One size does not fit all
	Netlink protocol specifications (in YAML)
	Using Netlink protocol specifications
	Netdev-genl (YAML Netlink for Netdev)
	Queue Configuration
	Queue Configuration (2)
	NAPI Configuration
	Page Pool Configuration
	Queue management
	Example APIs
	Summary
	Slide 17

